Mitigation of vibrations by stiff wave barriers: physical mechanisms

Pieter Coulier, Stijn François, Geert Degrande, and Geert Lombaert
KU Leuven, Department of Civil Engineering
Introduction

Stiff wave barrier next to the track

- Construction of a jet grouting wall next to the track
- Wave impeding barrier for railway induced vibrations

- Common construction techniques:
 - deep vibro compaction
 - gravel/cement columns
 - hydraulic fracture injection with stable cement–bentonite mixtures
 - ...
Introduction

Stiff wave barrier next to the track

- Block of stiffened soil in a homogeneous halfspace (e.g. by means of jet grouting)

<table>
<thead>
<tr>
<th></th>
<th>C_s [m/s]</th>
<th>C_p [m/s]</th>
<th>β_s [-]</th>
<th>β_p [-]</th>
<th>ρ [kg/m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halfspace</td>
<td>200</td>
<td>400</td>
<td>0.025</td>
<td>0.025</td>
<td>2000</td>
</tr>
<tr>
<td>Stiffened soil</td>
<td>550</td>
<td>950</td>
<td>0.05</td>
<td>0.05</td>
<td>2000</td>
</tr>
</tbody>
</table>

- Square cross-section: $w = h = 2$ m
Transfer functions

- Real part of the vertical displacement field $\hat{u}_z(x, \omega)$ at 5 Hz

 without barrier

 with barrier

- Corresponding insertion loss $\hat{IL}_z(x, \omega) = 20 \log_{10} \left(\frac{|\hat{u}_z^{\text{ref}}(x, \omega)|}{|\hat{u}_z(x, \omega)|} \right)$
Transfer functions

- Real part of the vertical displacement field $\hat{u}_z(x, \omega)$ at 30 Hz
 without barrier
 with barrier

- Corresponding insertion loss $\hat{IL}_z(x, \omega) = 20 \log_{10} \frac{|\hat{u}_z^{\text{ref}}(x, \omega)|}{|\hat{u}_z(x, \omega)|}$
Transfer functions

- Real part of the vertical displacement field $\hat{u}_z(x, \omega)$ at 60 Hz

 without barrier

 with barrier

- Corresponding insertion loss $\hat{IL}_z(x, \omega) = 20 \log_{10} \frac{|\hat{u}_{z}^{\text{ref}}(x, \omega)|}{|\hat{u}_z(x, \omega)|}$
Transfer functions

Plane wave propagation

- Cylindrical wavefield can be decomposed into plane waves, satisfying the dispersion relation
 \[\frac{1}{\lambda_x^2} + \frac{1}{\lambda_y^2} = \frac{1}{\lambda_R^2}, \]
 where \(\lambda_R = 2\pi \frac{C_R}{\omega} \) is the Rayleigh wavelength.

- Propagating plane waves are characterized by \(\lambda_R \leq \lambda_y \leq \infty \):
 - \(\theta = 0 \Rightarrow \lambda_x = \lambda_R, \lambda_y = \infty \)
 - \(\theta = \pi/2 \Rightarrow \lambda_y = \lambda_R, \lambda_x = \infty \)
Transfer functions

Plane wave propagation

- Rayleigh wave propagation: \(\frac{1}{\lambda_x} + \frac{1}{\lambda_y} = \frac{1}{\lambda_{Rt}} \)
- (a) Without and (b) with stiff wave barrier:

\(- \lambda_y = \infty (\lambda_x = \lambda_R) (\theta = 0)\)

\(- \lambda_R \leq \lambda_y \leq \infty (\theta = 0.50)\)
Transfer functions

Plane wave propagation

• Rayleigh wave propagation: \(\frac{1}{\lambda_x^2} + \frac{1}{\lambda_y^2} = \frac{1}{\lambda_{RT}^2} \)

• (a) Without and (b) with stiff wave barrier:

 - \(\lambda_R \leq \lambda_y \leq \infty \) (\(\theta = 1.2 \))

 - \(\lambda_y < \lambda_R \) (\(\theta = \pi/2 \))
Transfer functions

Interaction of Rayleigh waves in the soil and bending waves in the stiff wave barrier

• Rayleigh wave dispersion curve (black line):
 \[\lambda_R = 2\pi \frac{C_R}{\omega} \]

• Euler-Bernoulli beam theory in \((\lambda_y, \omega)\)-domain:
 \[\left(-\rho A \omega^2 + EI \left(\frac{2\pi}{\lambda_y} \right)^4 \right) \tilde{u}_z(\lambda_y, \omega) = \tilde{f}(\lambda_y, \omega) \]

• Free bending wave dispersion curve (red line):
 \[\lambda_b = \frac{2\pi}{\sqrt{\omega}} \left(\frac{EI}{\rho A} \right)^{1/4} \]

\[\Rightarrow \tilde{u}_z(\lambda_y, \omega) \propto 0 \text{ for } \lambda_y < \lambda_b \]

\[\lambda_y = \infty \]

\[\lambda_y = 2/3 \lambda_b \]

\[\lambda_y = \lambda_b \]

\[\lambda_y = 1/3 \lambda_b \]

Pieter Coulier, KU Leuven
Transfer functions

Interaction of Rayleigh waves in the soil and bending waves in the stiff wave barrier

- \(f < f_c: \lambda_b < \lambda_R \Rightarrow \) Rayleigh wave propagates unhindered through the block of stiffened soil
- \(f > f_c: \lambda_b > \lambda_R \Rightarrow \) wavefield is partially transmitted, partially blocked
 - \(\lambda_y > \lambda_b: \) plane waves are transmitted
 \(\tilde{IL}_z(x, \omega) \sim 0 \text{ dB} \)
 - \(\lambda_y < \lambda_b: \) transmission of plane waves is impeded by the block of stiffened soil

- **Critical frequency** \(f_c \) (intersection of the Rayleigh wave and the free bending wave dispersion curves):

 \[
 f_c = \frac{\omega_c}{2\pi} = \frac{C_R^2}{2\pi} \sqrt{\frac{\rho A}{EI}} = \frac{C_R^2}{2\pi h} \sqrt{\frac{12\rho}{E}} = 12 \text{ Hz}
 \]
Transfer functions

Interaction of Rayleigh waves in the soil and bending waves in the stiff wave barrier

• The propagating plane waves $\lambda_y > \lambda_R$ are characterized by a wave propagation direction $\theta = \sin^{-1}(\lambda_R/\lambda_y)$. A reduction of vibration levels in the spatial domain will only be obtained in an area delimited by a critical angle $\theta_c(\omega) = \sin^{-1}(\lambda_R/\lambda_b)$:

$$\sin \theta_c = \frac{C_R}{\sqrt{\omega}} \left(\frac{\rho A}{EI} \right)^{1/4} = \frac{C_R}{\sqrt{\omega h}} \left(\frac{12\rho}{E} \right)^{1/4}$$

\[\text{Diagram showing the interaction of waves and critical angle}\]